Adaptive control of redundant multiple robots in cooperative motion

نویسندگان

  • Mohamed Zribi
  • Shaheen Ahmad
  • Shengwu Luo
چکیده

A redundant robot has more degrees of freedom than what is needed to uniquely position the robot end-effector. In practical applications the extra degrees of fieedom increase the orientation and reach of the robot. The load carrying capacity of a single robot can be increased by cooperative manipulation of the load by two or more robots. In this paper we develop an adaptive control scheme for kinematically redundant multiple robots in cooperative motion. In a usual robotic task, only the end-effector position trajectory is specified The joint position trajectory will therefore be unknown, for a redundant multirobot system and it must be selected from a self-motion manifold for a specified end-effector or load motion. We show that the adaptive conuol of cooperative multiple redundant robots can be addressed as a reference velocity tracking problem in the joint space. A stable adaptive velocity control law is derived it ensures bounded parameter convergence, exponential convergence to zero of the load position error, the internal force error and the reference velocity error. The individual robot joint motions is shown to be stable by decomposing the joint coordinates into two variables one which is homeomorphic to the load coordinated, the other to the coordinates of the self-motion manifold. The dynamics on the self-motion manifold is directly shown to be related to the concept of zero-dynamics. It is shown that if the reference joint trajectory is selected to optimize a certain type of objective functions, then stable dynamics on the self-motion manifold results. The overall stability of the joint angle is established from the stability of two cascaded dynamic systems involving the two decomposed co0rdlIliltes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Kinematics Resolution of Redundant Cooperative Manipulators Using Optimal Control Theory

The optimal path planning of cooperative manipulators is studied in the present research. Optimal Control Theory is employed to calculate the optimal path of each joint choosing an appropriate index of the system to be minimized and taking the kinematics equations as the constraints. The formulation has been derived using Pontryagin Minimum Principle and results in a Two Point Boundary Value Pr...

متن کامل

Inverse Kinematics Resolution of Redundant Cooperative Manipulators Using Optimal Control Theory

The optimal path planning of cooperative manipulators is studied in the present research. Optimal Control Theory is employed to calculate the optimal path of each joint choosing an appropriate index of the system to be minimized and taking the kinematics equations as the constraints. The formulation has been derived using Pontryagin Minimum Principle and results in a Two Point Boundary Value Pr...

متن کامل

An Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload

In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...

متن کامل

Robust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length

This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...

متن کامل

Adaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors

Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Robotic Systems

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1996